Spectral attribute learning for visual regression
نویسندگان
چکیده
A number of computer vision problems such as facial age estimation, crowd counting and pose estimation can be solved by learning regression mapping on low-level imagery features. We show that visual regression can be substantially improved by two-stage regression where imagery features are first mapped to an attribute space which explicitly models latent correlations across continuously-changing output. We propose an approach to automatically discover “spectral attributes” which avoids manual work required for defining hand-crafted attribute representations. Visual attribute regression outperforms direct visual regression and our spectral attribute visual regression achieves state-of-the-art accuracy in multiple applications.
منابع مشابه
Semi-Supervised Regression using Spectral Techniques∗
Graph-based approaches for semi-supervised learning have received increasing amount of interest in recent years. Despite their good performance, many pure graph based algorithms do not have explicit functions and can not predict the label of unseen data. Graph regularization is a recently proposed framework which incorporates the intrinsic geometrical structure as a regularization term. It can ...
متن کاملUnsupervised Visual Attribute Transfer with Reconfigurable Generative Adversarial Networks
Learning to transfer visual attributes requires supervision dataset. Corresponding images with varying attribute values with the same identity are required for learning the transfer function. This largely limits their applications, because capturing them is often a difficult task. To address the issue, we propose an unsupervised method to learn to transfer visual attribute. The proposed method ...
متن کاملInteractively Guiding Semi-Supervised Clustering via Attribute-Based Explanations
Unsupervised image clustering is a challenging and often illposed problem. Existing image descriptors fail to capture the clustering criterion well, and more importantly, the criterion itself may depend on (unknown) user preferences. Semi-supervised approaches such as distance metric learning and constrained clustering thus leverage user-provided annotations indicating which pairs of images bel...
متن کاملPolarimetric Sar Image Segmentation Using Affinity Function from Probabilistic Boundaries and Patch Features
We investigate the segmentation of high resolution polarimetric Synthetic Aperture Radar (PolSAR) images of urban areas. The segmentation strategy in [1] is applied in this paper. Spectral graph segmentation has the advantage of capturing non-local property. The probabilistic boundaries and patch features are integrated for spectral graph segmentation. Accurate boundaries extraction and efficie...
متن کاملSpectral Norm of Random Kernel Matrices with Applications to Privacy
Kernel methods are an extremely popular set of techniques used for many important machine learning and data analysis applications. In addition to having good practical performance, these methods are supported by a well-developed theory. Kernel methods use an implicit mapping of the input data into a high dimensional feature space defined by a kernel function, i.e., a function returning the inne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Pattern Recognition
دوره 66 شماره
صفحات -
تاریخ انتشار 2017